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The determination of Jupiter’s angular momentum from the 
Lense-Thirring precession of the Juno spacecraft 

In its one-year mission around Jupiter (between October 2016 and October 2017), the 
Juno spacecraft will carry out a precise determination of the planet’s gravity field, 
with the goal of unveiling its interior structure. Juno will be inserted in a polar, highly 
eccentric orbit (e = 0,9466) with a period of nearly 11 days. The very low pericenter 
(about 5000 km altitude) makes the orbit especially sensitive to the zonal gravity 
field.  In addition to the perturbations due to classical gravity, the spacecraft is also 
exposed to significant relativistic effects. In particular, the high velocity at 
pericenter (60 km/s), in combination with Jupiter’s fast rotation (T=10 h), induces 
a remarkably large acceleration due to the Lense-Thirring (LT) precession.  

We assume that General Relativity (GR) is correct and use the measurement of the Lense-
Thirring precession to estimate the angular momentum ofJupiter, an important 
parameter to constrain the planet’s interior structure and rotation.  

As the LT acceleration decreases as 1/r3, by far the largest acceleration occurs during the 
pericenter pass (about 6 h duration). An approach based upon the direct estimation of 
the LT parameter using a multi-arc, least squares filter is adopted. 
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Gravity Experiment: 
•  Ground Equipment (DSN – DSS 25, Goldstone, Ca.) 
•  Onboard Instrumentation (Ka-band frequency translator) 
•  Precise Orbit Determination Software 
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A particle orbiting a rotating body experiences the relativistic Lense-Thirring effect. This 
effect accounts for the dragging exerted by a rotating body on the surrounding 
space-time. In the low-velocity, weak field approximation: 
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A Lageos-like approach for Juno was first suggested by L. Iorio in 2010. The goal was to 
observe LT by measuring the orbit node precession throughout the mission. However, 
due to periodic orbit mantainence maneuvers, this approach is not applicable. 

We adopt here a multi-arc analysis. The magnitude of the effect at Jupiter combined 
with the sensitivity of the Juno instrumentation allows the detection of the 
relativistic signal directly from the tracking data.  

For the similarity to the Lorentz 
acceleration of an electric charge in 
a magnetic field, it is often called 
gravito-magnetic acceleration. 

 
Juno’s line-of-sight velocity variation 

at pericenter: 0.35 mm/s.  
 
This variation can be observed as 

Doppler shift on the two-way radio 
signal used to track the spacecraft 
from ground 
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The Lense-Thirring effect is 3,360 times larger for Juno than for LAGEOS. 
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The covariance of the angular momentum estimate is obtained as an output of the multi-
arc least squares filter. The  low degree zonal gravity field results to be partially 
correlated with the angular momentum. In spite of these correlations, the specific 
angular momentum can be determined with excellent accuracy. 
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The Juno mission offers the opportunity to observe the dragging of inertial frames (LT 
effect) with a very high accuracy around a planet other than the Earth. 

The approach used for the LAGEOS satellites orbiting the Earth cannot be applied to Juno 
because large longitude-keeping maneuvers destroy the dynamical coherence of the 
orbit. We rather use the Doppler observables acquired during pericenter passes in a 
multi-arc orbital fit. We assume General Relativity is true and use the relativistic 
signal in the s/c tracking data to estimate Jupiter’s angular momentum. 

The measurement has been simulated numerically using JPL’s Orbit Determination 
Program (ODP) using the nominal mission profile. However, the current version of the 
ODP does not allow the estimation of the LT parameter, so that it had to be 
complemented by additional software for the integration of the modified state and 
variational equations.  

 
The Jupiter’s angular momentum is estimated together with the zonal harmonic 

coefficients, k2 and k3 Love numbers and the spacecraft state vector.  This realistic 
simulation shows that the specific angular momentum can be estimated with an 
absolute accuracy of 5.5E+3 corresponding to a 2.3% relative accuracy if the moment 
of inertia of the planet is 0.26 and the rotation uniform.  
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Juno gravity orbits Aug 2016 – Jul 2019
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Juno GRS overflights

PJ18
13,000 km

PJ07
9,000 km PJ21

19,000 km
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The GRS overflight during PJ07 occurred in July 2017. The 
spacecraft attitude was optimized for MWR observations. 

What it means for gravity science:

• X-band data only on MGA

• No dual-frequency calibrations for the Io plasma torus
• ∼ 9,000km altitude

Credit: NASA/JPL-Caltech, SWRI

PJ07 – MicroWave Radiometer observations

Cheng Li, July 2017
AOGS 2019 Paper Number: PS12-A017
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Thermal wind balance and the GRS
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• Mascon GM ∼
0.126 km3/s2

• Vertical 
separation  ∼ 760 
km 

• Mascon GM ∼
0.965 km3/s2

• Vertical 
separation ∼
1,650 km 

H = 1,000km

H = 300km

Relationship 
between scale 
height and mass 
anomaly

From Parisi et al., 2019, in review
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Method 1: Concentrated mass model for the Great Red Spot

6

• One model used for the detection of the GRS depth consists of two thin circular flat disk 
mascons at different depth

– With equal masses of opposite sign
– Center of mascons at the GRS latitude and longitude
– Radius of 8,000 km equal to longitudinal radius of GRS
– Estimated mass varies depending on GRS depth

AOGS 2019 Paper Number: PS12-A017 From Parisi et al., 2019, in review
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Method 1: The approximation of the gravitational potential

7AOGS 2019 Paper Number: PS12-A017 From Parisi et al., 2019, in review
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Method 2: The Slepian approach 
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From Galanti et al., 2019, ApJL
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Method 2: The Slepian approach 
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Results from PJ07 (1)
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PJ07 Doppler residuals versus GRS signature, for H = 300 km

Time to C/A (hrs)
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Results from PJ07 (2)
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PJ07 Doppler residuals versus GRS signature, for H = 1,000 km

Time to C/A (hrs)
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Conclusions
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• The gravity signature of the GRS is subtle and very precise measurements 
of the Jupiter gravity field are necessary for its detection

• We developed two methods for estimating the depth of the Great Red 
Spot: one looks at the mass anomalies, one looks at the gravity anomalies

• PJ07 data suggest that the GRS is no deeper than 1,000 km, consistent 
with MWR results

• PJ18 and PJ21 will be combined to confirm PJ07 results


